Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(2): 170-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062245

RESUMO

The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteômica , Fatores de Transcrição/genética , Transferases , Proteína GLI1 em Dedos de Zinco/genética
2.
Chemistry ; 29(62): e202302237, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565343

RESUMO

Natural products (NPs) are highly profitable pharmacological tools due to their chemical diversity and ability to modulate biological systems. Accessing new chemical entities while retaining the biological relevance of natural chemotypes is a fundamental goal in the design of novel bioactive compounds. Notably, NPs have played a crucial role in understanding Hedgehog (HH) signalling and its pharmacological modulation in anticancer therapy. However, HH antagonists developed so far have shown several limitations, thus growing interest in the design of second-generation HH inhibitors. Through smart manipulation of the NPs core-scaffold, unprecedented and intriguing architectures have been achieved following different design strategies. This study reports the rational design and synthesis of a first and second generation of anthraquinone-based hybrids by combining the rhein scaffold with variously substituted piperazine nuclei that are structurally similar to the active portion of known SMO antagonists, the main transducer of the HH pathway. A thorough functional and biological investigation identified RH2_2 and RH2_6 rhein-based hybrids as valuable candidates for HH inhibition through SMO antagonism, with the consequent suppression of HH-dependent tumour growth. These findings also corroborated the successful application of the NPs-based hybrid design strategy in the development of novel NP-based SMO antagonists.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor Smoothened/uso terapêutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antraquinonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
3.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993604

RESUMO

Acetylated microtubules play key roles in the regulation of mitochondria dynamics. It has however remained unknown if the machinery controlling mitochondria dynamics functionally interacts with the alpha-tubulin acetylation cycle. Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion, transport and tethering with the endoplasmic reticulum. The role of MFN2 in regulating mitochondrial transport has however remained elusive. Here we show that mitochondrial contacts with microtubules are sites of alpha-tubulin acetylation, which occurs through the MFN2-mediated recruitment of alpha-tubulin acetyltransferase 1 (ATAT1). We discover that this activity is critical for MFN2-dependent regulation of mitochondria transport, and that axonal degeneration caused by CMT2A MFN2 associated mutations, R94W and T105M, may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in regulating acetylated alpha-tubulin and suggest that disruption of the tubulin acetylation cycle play a pathogenic role in the onset of MFN2-dependent CMT2A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...